Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(6): e9703, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38356091

RESUMO

RATIONALE: Secondary hypertension is often caused by activation of complex multi-organ endocrine systems, while renin activity indicated by angiotensins (Angs), aldosterone (ALD) and cortisol (COR) in such systems are generally accepted as its diagnostic markers. As antibody-based methods cannot offer comparable quantification for these biomarkers, a liquid chromatography (LC)-tandem mass spectrometry (MS/MS)-based approach was developed to quantify them simultaneously and accurately. METHODS: Five different beads for magnetic solid-phase extraction (MSPE) were evaluated towards their enrichment efficiency for these biomarkers. An LC system with optimized elution gradient and a triple-quadrupole MS with tuned parameters were coupled to quantitatively monitor the extracted analytes. The method performance was further examined such as linearity, precision, stability, recovery rate and matrix effect. Based on the developed method, the abundance of Ang II, ALD and COR in plasma was measured and the quantification was compared with that derived from commercial ELISA kits. RESULTS: As compared with other MSPEs, Angs, ALD and COR were highly enriched by the HLB magnetic beads with satisfactory recoveries. These analytes were simultaneously quantified by LC/MS/MS and all the method parameters for quantification were well matched with the requirements of clinical testing. Comparison of the quantitative results derived from ELISA and LC/MS/MS exhibited that the two methods offered basically comparable values with Pearson r values at 0.896, 0.895 and 0.835, respectively. The stability test for plasma Angs at room temperature indicated that the abundance of Ang II was relatively stable within 3 h, whereas that of Ang I and Ang 1-7 was time-dependently changed. CONCLUSIONS: Coupling of HLB beads and LC/MS/MS thus enables simultaneous quantification of a set of biomarkers related to secondary hypertension.


Assuntos
Hipertensão , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Cromatografia Líquida/métodos , Extração em Fase Sólida/métodos , Biomarcadores , Fenômenos Magnéticos , Cromatografia Líquida de Alta Pressão
2.
Appl Environ Microbiol ; 89(10): e0095623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815340

RESUMO

Klebsiella pneumoniae is a ubiquitous human pathogen, and its clinical treatment faces two major challenges: multidrug resistance and the pathogenesis of hypervirulent K. pneumoniae. The discovery and study of conditionally essential (CE) genes that can function as potential antimicrobial targets has always been a research concern due to their restriction in the development of novel antibiotics. However, the lack of essential functional genomic data has hampered the study of the mechanisms of essential genes related to antimicrobial susceptibility. In this study, we developed a pooled CE genes mobile clustered regularly interspaced short palindromic repeat (CRISPR) interference screening method (Mobile-CRISPRi-seq) for K. pneumoniae to identify genes that play critical roles in antimicrobial fitness in vitro and host immunity in vivo. Targeting 870 predicted CE genes in K. pneumoniae, Mobile-CRISPRi-seq uncovered the depletion of tetrahydrofolate synthesis pathway genes folB and folP under trimethoprim pressure. Our screening also identified genes waaE and fldA related to polymyxin and ß-lactam susceptibility by applying a screening strategy based on Mobile-CRISPRi-seq and comparative genomics. Furthermore, using a mouse infection model and Mobile-CRISPRi-seq, multiple virulence genes were identified, and among these genes, pal, yciS, and ribB were demonstrated to contribute to the pathogenesis of K. pneumoniae. This study provides a simple, rapid, and effective platform for screening potential antimicrobial targets and virulence genes in K. pneumoniae, and this broadly applicable system can be expanded for high-throughput functional gene study in multiple pathogenic bacteria, especially in gram-negative bacteria. IMPORTANCE The discovery and investigation of conditionally essential (CE) genes that can function as potential antimicrobial targets has always been a research concern because of the restriction of antimicrobial targets in the development of novel antibiotics. In this study, we developed a pooled CE gene-wide mobile clustered regularly interspaced short palindromic repeat (CRISPR) interference sequencing (Mobile-CRISPRi-seq) strategy in Klebsiella pneumoniae to identify genes that play critical roles in the fitness of antimicrobials in vitro and host immunity in vivo. The data suggest a robust tool to screen for loss-of-function phenotypes in a pooled gene knockdown library in K. pneumoniae, and Mobile-CRISPRi-seq may be expanded to multiple bacteria for screening and identification of genes with crucial roles in the fitness of antimicrobials and hosts.


Assuntos
Genes Essenciais , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Virulência/genética , Técnicas de Silenciamento de Genes , Bactérias/genética , Antibacterianos/farmacologia
3.
Infect Drug Resist ; 16: 4311-4323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424666

RESUMO

Background: The currently used conventional susceptibility testing for drug-resistant Mycobacterium tuberculosis (M.TB) is limited due to being time-consuming and having low efficiency. Herein, we propose the use of a microfluidic-based method to rapidly detect drug-resistant gene mutations using Kompetitive Allele-Specific PCR (KASP). Methods: A total of 300 clinical samples were collected, and DNA extraction was performed using the "isoChip®" Mycobacterium detection kit. Phenotypic susceptibility testing and Sanger sequencing were performed to sequence the PCR products. Allele-specific primers targeting 37 gene mutation sites were designed, and a microfluidic chip (KASP) was constructed using 112 reaction chambers to simultaneously detect multiple mutations. Chip validation was performed using clinical samples. Results: Phenotypic susceptibility of clinical isolates revealed 38 rifampicin (RIF)-resistant, 64 isoniazid (INH)-resistant, 48 streptomycin (SM)-resistant and 23 ethambutol (EMB)-resistant strains, as well as 33 multi-drug-resistant TB (MDR-TB) strains and 20 strains fully resistant to all four drugs. Optimization of the chip-based detection system for drug resistance detection showed satisfactory specificity and maximum fluorescence at a DNA concentration of 1×101 copies/µL. Further analysis revealed that 76.32% of the RIF-resistant strains harbored rpoB gene mutations (sensitivity, 76.32%; specificity 100%), 60.93% of the INH-resistant strains had katG gene mutations (sensitivity, 60.93%; specificity, 100%), 66.66% of the SM-resistant strains carried drug resistance gene mutations (sensitivity, 66.66%; specificity, 99.2%), and 69.56% of the EMB-resistant strains had embB gene mutations (sensitivity, 69.56%; specificity, 100%). Further, the overall agreement between the microfluidic chip and Sanger sequencing was satisfactory, with a turnaround time of the microfluidic chip was approximately 2 hours, much shorter than the conventional DST method. Conclusion: The proposed microfluidic-based KASP assay provides a cost-effective and convenient method for detecting mutations associated with drug resistance in M. tuberculosis. It represents a promising alternative to the traditional DST method, with satisfactory sensitivity and specificity and a much shorter turnaround time.

4.
Microbiol Spectr ; 11(3): e0141422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154704

RESUMO

Tuberculosis remains a major global public concern as a leading cause of health care-associated infections. The detection of Mycobacterium tuberculosis (MTB) is challenging due to the paucibacillary nature of the pathogen. For suspected pulmonary and extrapulmonary tuberculosis patients, if sputum, bronchoalveolar lavage fluid (BALF), related samples are negative for MTB, or suspected tumors, biopsy tissues may provide a better diagnostic yield. This study was aimed at comparing the performances of three methods in identifying MTB in biopsy tissues, including the Bactec mycobacterial growth indicator tube 960 (MGIT 960) system, the GeneXpert MTB/RIF assay (GeneXpert), and the Bactec Myco/F lytic culture (Myco/F) system. Biopsy samples from 3,209 nonduplicated patients were retrospectively enrolled between January 2018 and September 2021, of which 180 (5.6%) were positive for MTB by at least one method. GeneXpert revealed the highest recovery rate (134/162, 82.7%), followed by MGIT 960 (99/135, 73.3%) and Myco/F (26/143, 18.1%), and the composite positive rate for GeneXpert and MGIT 960 was 96.6% (173/179). Pairwise comparisons were conducted after completion of both tests, and the results showed that Myco/F had significantly lower detection rates than GeneXpert and MGIT 960 (16.4% versus 82.8%, P < 0.001; 14.3% versus 71.4%, P < 0.001). In summary, GeneXpert was the most sensitive and recommended method for MTB detection in biopsy tissues, and the combination of GeneXpert and MGIT 960 could improve the overall diagnostic yield. IMPORTANCE Mycobacterium tuberculosis (MTB) poses a severe threat to public health worldwide. The diagnosis of tuberculosis is challenging due to the low load of the microorganism in samples. Biopsy tissues are sometimes collected via invasive procedures with limited size, and additional samples are often inaccessible. The GeneXpert MTB/RIF assay, Bactec MGIT 960 system, and Bactec Myco/F lytic system have been used in detecting MTB in our laboratory. Here, we evaluated the performances of these three methods in 3,209 biopsy tissues samples to establish a more effective protocol based on clinical requirements. Attempts for a locally optimized protocol should be always made.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Estudos Retrospectivos , Tuberculose/diagnóstico , Escarro/microbiologia
5.
ACS Nano ; 17(8): 7250-7256, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37052221

RESUMO

Conventional nucleic acid detection technologies usually rely on amplification to improve sensitivity, which has drawbacks, such as amplification bias, complicated operation, high requirements for complex instruments, and aerosol pollution. To address these concerns, we developed an integrated assay for the enrichment and single molecule digital detection of nucleic acid based on a CRISPR/Cas13a and microwell array. In our design, magnetic beads capture and concentrate the target from a large volume of sample, which is 100 times larger than reported earlier. The target-induced CRISPR/Cas13a cutting reaction was then dispersed and limited to a million individual femtoliter-sized microwells, thereby enhancing the local signal intensity to achieve single-molecule detection. The limit of this assay for amplification-free detection of SARS-CoV-2 is 2 aM. The implementation of this study will establish a "sample-in-answer-out" single-RNA detection technology without amplification and improve the sensitivity and specificity while shortening the detection time. This research has broad prospects in clinical application.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , RNA , Sistemas CRISPR-Cas , SARS-CoV-2 , RNA Viral , Técnicas de Amplificação de Ácido Nucleico
6.
J Med Virol ; 95(3): e28612, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36840474

RESUMO

Serum hepatitis B virus (HBV) RNA is a new serological indicator reflecting viral replication with good clinical application prospects. This study aimed to clarify the dynamic changes of serum HBV RNA levels and the quasispecies of HBV RNA virus-like particles in nucleos(t)ide analogues (NAs)-experienced chronic hepatitis B (CHB) patients harboring NAs-resistant mutations and their identifiable effects on NAs resistance. We included CHB patients who were on long-term NAs treatment and with HBV DNA rebound. The longitudinally dynamics of serum HBV RNA levels were quantitatively detected, and the quasispecies differences between serum HBV DNA and serum HBV RNA were compared by high-throughput sequencing. The effect of NAs concentration pressure on altering the resistance mutations quasispecies proportion of HBV DNA and HBV RNA in cell supernatant was analyzed in vitro. A total of 447 serum samples from 36 CHB patients treated with NAs were collected. The median follow-up period was 47 months (about 4 years), and the longest follow-up period was 117 months (about 10 years). Our results showed that HBV RNA could reflect virological breakthrough in 23 (64%, 23/36) patients, and serum HBV RNA rebound earlier than HBV DNA in 12 (52%, 12/23) patients. However, serum HBV RNA remained at a consistently high level and did not fluctuate significantly with the HBV DNA rebound in 6 of 36 patients. In addition, serum HBV RNA was not consistently detectable in 7 of the 36 patients, and their serum HBV RNA was undetectable even after HBV DNA had rebounded. The proportion of drug-resistant mutations in HBV DNA was higher than that of HBV RNA by high-throughput sequencing. The results of in vitro experiments showed that the viral strains with drug-resistant mutation in HBV DNA in cell supernatants gradually become the dominant strains with the increase of NAs concentrations. Serum HBV RNA levels can reflect virological breakthrough in most NAs- treated CHB patients, but there are certain limitations. NAs alter the quasispecies composition of serum HBV DNA and serum HBV RNA, resulting in a higher detection rate of drug-resistant mutations in serum HBV DNA than in serum HBV RNA.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Humanos , Vírus da Hepatite B/genética , DNA Viral/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , RNA/farmacologia , RNA/uso terapêutico , Quase-Espécies , Mutação
7.
Signal Transduct Target Ther ; 8(1): 42, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681668

RESUMO

The Omicron variants of SARS-CoV-2, primarily authenticated in November 2021 in South Africa, has initiated the 5th wave of global pandemics. Here, we systemically examined immunological and metabolic characteristics of Omicron variants infection. We found Omicron resisted to neutralizing antibody targeting receptor binding domain (RBD) of wildtype SARS-CoV-2. Omicron could hardly be neutralized by sera of Corona Virus Disease 2019 (COVID-19) convalescents infected with the Delta variant. Through mass spectrometry on MHC-bound peptidomes, we found that the spike protein of the Omicron variants could generate additional CD8 + T cell epitopes, compared with Delta. These epitopes could induce robust CD8 + T cell responses. Moreover, we found booster vaccination increased the cross-memory CD8 + T cell responses against Omicron. Metabolic regulome analysis of Omicron-specific T cell showed a metabolic profile that promoted the response of memory T cells. Consistently, a greater fraction of memory CD8 + T cells existed in Omicron stimulated peripheral blood mononuclear cells (PBMCs). In addition, CD147 was also a receptor for the Omicron variants, and CD147 antibody inhibited infection of Omicron. CD147-mediated Omicron infection in a human CD147 transgenic mouse model induced exudative alveolar pneumonia. Taken together, our data suggested that vaccination booster and receptor blocking antibody are two effective strategies against Omicron.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , COVID-19/genética , Leucócitos Mononucleares , SARS-CoV-2 , Anticorpos Neutralizantes , Epitopos , Camundongos Transgênicos
8.
Microbiol Spectr ; 11(1): e0330822, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546869

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen with multiple strategies to interact with other microbes and host cells, gaining fitness in complicated infection sites. The contact-dependent type VI secretion system (T6SS) is one critical secretion apparatus involved in both interbacterial competition and pathogenesis. To date, only limited numbers of T6SS-effectors have been clearly characterized in P. aeruginosa laboratory strains, and the importance of T6SS diversity in the evolution of clinical P. aeruginosa remains unclear. Recently, we characterized a P. aeruginosa clinical strain LYSZa7 from a COVID-19 patient, which adopted complex genetic adaptations toward chronic infections. Bioinformatic analysis has revealed a putative type VI secretion system (T6SS) dependent lipase effector in LYSZa7, which is a homologue of TseL in Vibrio cholerae and is widely distributed in pathogens. We experimentally validated that this TseL homologue belongs to the Tle2, a subfamily of T6SS-lipase effectors; thereby, we name this effector TseL (TseLPA in this work). Further, we showed the lipase-dependent bacterial toxicity of TseLPA, which primarily targets bacterial periplasm. The toxicity of TseLPA can be neutralized by two immunity proteins, TsiP1 and TsiP2, which are encoded upstream of tseL. In addition, we proved this TseLPA contributes to bacterial pathogenesis by promoting bacterial internalization into host cells. Our study suggests that clinical bacterial strains employ a diversified group of T6SS effectors for interbacterial competition and might contribute to emerging of new epidemic clonal lineages. IMPORTANCE Pseudomonas aeruginosa is one predominant pathogen that causes hospital-acquired infections and is one of the commonest coinfecting bacteria in immunocompromised patients and chronic wounds. This bacterium harbors a diverse accessory genome with a high frequency of gene recombination, rendering its population highly heterogeneous. Numerous Pa lineages coexist in the biofilm, where successful epidemic clonal lineage or strain-specific type commonly acquires genes to increase its fitness over the other organisms. Current studies of Pa genomic diversity commonly focused on antibiotic resistant genes and novel phages, overlooking the contribution of type VI secretion system (T6SS). We characterized a Pa clinical strain LYSZa7 from a COVID-19 patient, which adopted complex genetic adaptations toward chronic infections. We report, in this study, a novel T6SS-lipase effector that is broadly distributed in Pa clinical isolates and other predominant pathogens. The study suggests that hospital transmission may raise the emergence of new epidemic clonal lineages with specified T6SS effectors.


Assuntos
COVID-19 , Pseudomonas aeruginosa , Sistemas de Secreção Tipo VI , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , COVID-19/complicações , COVID-19/microbiologia , Infecção Persistente , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
9.
Drug Discov Ther ; 16(6): 300-304, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36529507

RESUMO

The 2022 monkeypox outbreak outside Africa is ongoing. Cases have been reported in Hong Kong and Chongqing, China. In order to better prevent and control the potential spread of monkeypox virus in China, the development of sensitive and reliable detection commercial kits is imminent. This correspondence reviews the existing laboratory assays and related technologies for nucleic acid (PCR) and serological assays for the diagnosis of monkeypox virus to provide reference for the management and decision-making departments. Due to the serological cross-reactivity of orthopoxviruses, PCR is the laboratory test of choice to confirm monkeypox virus infection. We recommend a dual-target PCR approach in which one assay targets a conserved sequence of the Orthopoxvirus genus and the other targets a monkeypox virus specific sequence.


Assuntos
Vírus da Varíola dos Macacos , Humanos , Vírus da Varíola dos Macacos/genética , /epidemiologia , Laboratórios Clínicos , Reação em Cadeia da Polimerase , Testes Imunológicos
10.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36259361

RESUMO

Metagenomic sequencing analysis (mNGS) has been implemented as an alternative approach for pathogen diagnosis in recent years, which is independent of cultivation and is able to identify all potential antibiotic resistance genes (ARGs). However, current mNGS methods have to deal with low amounts of prokaryotic deoxyribonucleic acid (DNA) and high amounts of host DNA in clinical samples, which significantly decrease the overall microbial detection resolution. The recently released nanopore adaptive sampling (NAS) technology facilitates immediate mapping of individual nucleotides to a given reference as each molecule is sequenced. User-defined thresholds allow for the retention or rejection of specific molecules, informed by the real-time reference mapping results, as they are physically passing through a given sequencing nanopore. We developed a metagenomics workflow for ultra-sensitive diagnosis of bacterial pathogens and ARGs from clinical samples, which is based on the efficient selective 'human host depletion' NAS sequencing, real-time species identification and species-specific resistance gene prediction. Our method increased the microbial sequence yield at least 8-fold in all 21 sequenced clinical Bronchoalveolar Lavage Fluid (BALF) samples (4.5 h from sample to result) and accurately detected the ARGs at species level. The species-level positive percent agreement between metagenomic sequencing and laboratory culturing was 100% (16/16) and negative percent agreement was 100% (5/5) in our approach. Further work is required for a more robust validation of our approach with large sample size to allow its application to other infection types.


Assuntos
Antibacterianos , Nanoporos , Humanos , Fluxo de Trabalho , Farmacorresistência Bacteriana/genética , Metagenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Bactérias/genética , DNA
11.
Antimicrob Agents Chemother ; 66(10): e0081122, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36106884

RESUMO

Bedaquiline has been widely used as a part of combination dosage regimens for the treatment of multidrug-resistant tuberculosis (MDR-TB) patients with limited options. Although the effectiveness and safety of bedaquiline have been demonstrated in clinical trials, limited studies have investigated the significant pharmacokinetics and the impact of genotype on bedaquiline disposition. Here, we developed a population pharmacokinetic model of bedaquiline to describe the concentration-time data from Chinese adult patients diagnosed with MDR-TB. A total of 246 observations were collected from 99 subjects receiving the standard recommended dosage. Bedaquiline disposition was well described by a one-compartment model with first-order absorption. Covariate modeling identified that gamma-glutamyl transferase (GGT) and the single-nucleotide polymorphism (SNP) rs319952 in the AGBL4 gene were significantly associated with the apparent clearance of bedaquiline. The clearance (CL/F) was found to be 1.4 L/h lower for subjects with allele GG in SNP rs319952 than for subjects with alleles AG and AA and to decrease by 30% with a doubling in GGT. The model-based simulations were designed to assess the impact of GGT/SNP rs319952 on bedaquiline exposure and showed that patients with genotype GG in SNP rs319952 and GGT ranging from 10 to 50 U/L achieved the targeted maximum serum concentration at steady state (Cmax,ss). However, when GGT was increased to 100 U/L, Cmax,ss was 1.68-fold higher than the highest concentration pursued. The model developed provides the consideration of genetic polymorphism and hepatic function for bedaquiline dosage in MDR-TB adult patients.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Adulto , Humanos , Antituberculosos/farmacocinética , Diarilquinolinas/farmacocinética , Transferases , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/complicações , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/complicações , Polimorfismo de Nucleotídeo Único
12.
Emerg Microbes Infect ; 11(1): 1973-1981, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35916253

RESUMO

OBJECTIVES: Mycobacterium paragordonae (MPG) is an emerging and less common type of Non-tuberculous mycobacteria (NTM) and we know little about its characteristics and prognosis, hence we constructed this retrospective cohort study. METHODS: MPG was identified using MALD-TOF MS, multi-target combined gene sequencing and WGS. Clinical information was collected, antimicrobial susceptibility testing was measured using the SLOMYCO panel, and optimal growth temperature testing was measured using Lowenstein-Jensen medium. RESULTS: Eight MPGs were isolated from 1730 NTMs (0.46%); the mean age of MPG pulmonary disease (MPG-PD) patients was 42.38 ± 9.92 years, 37.5% were male, and the average BMI was 18.4 ± 0.51 kg/m2. All patients had the symptoms of cough and sputum and CT images mainly presented in patchy or streaky shadows, MPG grew at 25°C, 30°C and 37°C, and the optimal growth temperature is 37°C. MPGs were sensitive to clarithromycin, rifabutin, amikacin, linezolid, moxifloxacin, cotrimoxazole and ciprofloxacin, two isolates were resistant to rifampicin. Two patients had follow up information, their imaging remained stable during the follow-up. CONCLUSIONS: MPG-PD is a rare NTM disease and is more likely to develop in middle-aged, female, and low BMI patients. The patients present with no specific features within the symptoms as well as the CT imaging. The optimal growth temperature of MPG is at 37°C, MPG-PD has excellent sensitivity to drugs recommended by CLSI and presents with a stable disease.


Assuntos
Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Adulto , Antibacterianos/farmacologia , Feminino , Humanos , Pneumopatias/tratamento farmacológico , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mycobacterium , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/genética , Estudos Retrospectivos
13.
Anal Chem ; 94(27): 9603-9609, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35775831

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)-based nucleic acid detection can be combined with recombinase-aided amplification (RAA) to enable rapid, accurate, and early detection of SARS-CoV-2. Current CRISPR-based approaches to detecting viral nucleic acid typically require immense manual operations to transfer RPA amplicons for CRISPR detection or suffer from compromised sensitivity by mixing the competing RPA amplification and CRISPR detection. Here, we develop dual-CRISPR/Cas12a-assisted RT-RAA assay and a ″sample-to-answer″ centrifugal microfluidic platform that can automatically detect 1 copy/µL of the SARS-CoV-2 within 30 min. This chip separates the amplification (RAA) from detection (CRISPR), such that sensitivity is maximized and the time consumption is decreased by a factor of 3. For the 26 positive and 8 negative clinical SARS-CoV-2 samples, this automated centrifugal microfluidics achieved 100% accuracy compared to the gold-standard RT-PCR technique. This point-of-care test, with the advantages of being one-step, automated, rapid, and sensitive, will have a significant potential for clinical diagnosis and disease prevention.


Assuntos
COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , Sistemas CRISPR-Cas , Humanos , Microfluídica , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases , SARS-CoV-2/genética , Sensibilidade e Especificidade
14.
Front Microbiol ; 13: 845045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479623

RESUMO

Escherichia coli sequence type 405 is an emerging antibiotic-resistant clonal group associated with the global dissemination of extended-spectrum ß-lactamase-producing E. coli. In this study, we report the genome assembly and characterization of a uropathogenic E. coli ST405 strain, SZESBLEC201, based on long and short reads obtained from the Nanopore and Illumina sequencing platforms, respectively. Whole-genome sequencing revealed that SZESBLEC201 harbors a 5,020,403 bp chromosome and three plasmids, namely, pSZESBLEC201-1, pSZESBLEC201-2, and pSZESBLEC201-3. pSZESBLEC201-1 (111,621 bp) belongs to the IncFIA-FIB type and harbors bla CTX-M-15. However, this plasmid does not harbor conjugative transfer-associated genes, rendering pSZESBLEC201-1 unable to be conjugatively transferred. pSZESBLEC201-2 (95,138 bp) is a phage-like plasmid that shows a strong genome synteny with Escherichia phage P1 but with the absence of mobile genetic elements and some regulatory genes. pSZESBLEC201-3 (92,865 bp) belongs to the IncI1 type and carries bla CTX-M-24. In contrast to pSZESBLEC201-1, pSZESBLEC201-3 retains its full active conjugation machinery and can be transferred via conjugation. The genetic features of the genome show that the SZESBLEC201 has a unique virulence pattern compared with genetically similar strains found in the same country (China). The plasmid backbones exhibit a high degree of similarity to those of geographically distant isolates, highlighting the global spread of bla CTX-M genes and the genome plasticity of this clonal group. The coexistence of two bla CTX-M variants in the same strain increases the risk of the emergence of new bla CTX-M variants. Further studies on phage-like plasmids are necessary to provide insights into their biological activities and clinical significance.

15.
J Proteome Res ; 21(5): 1311-1320, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35353507

RESUMO

The members of the glutathione S-transferase (GST) superfamily often exhibit functional overlap and can compensate for each other. Their concentrations in serum are considered as disease biomarkers. A global and quantitative evaluation of serum GSTs is therefore urgent, but there is a lack of efficient approaches due to technological limitations. GSH magnetic beads were examined for their affinity to enrich GSTs in serum, and the enriched GSTs were quantitatively targeted using a Q Exactive HF-X mass spectrometer in parallel reaction monitoring (PRM) mode. To optimize the quantification of GST peptides, sample types, trypsin digestion, and serum loading were carefully assessed; a biosynthetic method was employed to generate isotope-labeled GST peptides, and instrumental parameters were systematically optimized. A total of 134 clinical sera were collected for GST quantification from healthy donors and patients with four liver diseases. Using the new approach, GSTs in healthy sera were profiled: 14 GST peptides were quantified, and the abundance of five GST families was ranked GSTM > GSTP > GSTA > MGST1 > GSTT1, ranging from 0.1 to 4 pmol/L. Furthermore, combining the abundance of multiple GST peptides could effectively distinguish different types of liver diseases. Quantification of serum GSTs through targeted proteomics, therefore, has apparent clinical potential for disease diagnosis.


Assuntos
Glutationa Transferase , Espectrometria de Massas em Tandem , Cromatografia Líquida , Glutationa , Glutationa Transferase/análise , Humanos , Fígado , Peptídeos , Proteômica/métodos
16.
Microbiol Spectr ; 10(2): e0156021, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35234511

RESUMO

The genus Nocardia includes ubiquitous environmental saprophytes and the most frequently isolated aerobic actinomycete human pathogen responsible for localized or disseminated infection. Herein, the species distribution and antimicrobial susceptibility profiles of 441 nonrepetitive Nocardia strains are reported, collected from 21 provinces/cities in China over 13 years (from 2009 to 2021). These isolates were identified to species level by mass spectrometry or targeted DNA sequencing. The susceptibility profiles of Nocardia species for 15 antibiotics were determined by the broth microdilution method. Among these Nocardia isolates, Nocardia farcinica was the most commonly isolated species (39.9%, 176 of 441), followed by Nocardia cyriacigeorgica (28.6%, 126), Nocardia abscessus (6.6%, 29), and Nocardia otitidiscaviarum (5.9%, 26). Furthermore, 361 Nocardia strains (81.9%) were collected from lower respiratory tract (sputum, lung tissue, and bronchoalveolar lavage fluid), 50 (11.3%) were collected from skin and soft tissues, 9 were collected from blood, 9 were collected from eye, 4 were collected from cerebrospinal fluid and brain abscesses, and 2 were collected from pleural effusion. All of the Nocardia strains were susceptible to linezolid, followed by amikacin (99.3%) and trimethoprim-sulfamethoxazole (TMP-SMX) (99.1%). The antibiotic resistance profiles of other antibiotics varied tremendously among different Nocardia species. This demonstrated that accurate species identification and/or antibiotic susceptibility testing should be performed before the usage of these antibiotics. In summary, this is the largest study on the species and antibiotic resistance profiles of the genus Nocardia circulating in China, and our data will contribute to a better understanding of clinical nocardiosis. IMPORTANCE The genus Nocardia has the potential to cause nocardiosis, which might be underrecognized and underdiagnosed. Herein, the demographical features of 441 nonrepetitive nocardiosis cases and species distribution of their Nocardia strains in China, 2009 to 2021, are summarized. The susceptibility profiles for 15 antibiotics against all of the above Nocardia strains were also determined by the broth microdilution method. To date, this is the largest study on the genus Nocardia contributing to nocardiosis in China. Our study will be helpful for understanding the species diversity of Nocardia isolates distributed in China and for decision-making in the context of nocardiosis diagnosis and treatment.


Assuntos
Nocardiose , Nocardia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sequência de Bases , Farmacorresistência Bacteriana/genética , Humanos , Nocardia/genética , Nocardiose/tratamento farmacológico , Nocardiose/epidemiologia , Nocardiose/genética
17.
Cell Biosci ; 12(1): 14, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139898

RESUMO

BACKGROUND: COVID-19 pneumonia has caused huge impact on the health of infected patients and associated with high morbidity and mortality. Shift in the lung microbial ecology upon such viral infection often worsens the disease and increases host susceptibility to superinfections. Bacterial superinfection contributes to the aggravation of COVID-19 and poses a great challenge to clinical treatments. An in-depth investigation on superinfecting bacteria in COVID-19 patients might facilitate understanding of lung microenvironment post virus infections and superinfection mechanism. RESULTS: We analyzed the adaptation of two pairs of P. aeruginosa strains with the same MLST type isolated from two critical COVID-19 patients by combining sequencing analysis and phenotypic assays. Both P. aeruginosa strains were found to turn on alginate biosynthesis and attenuate type VI secretion system (T6SS) during short-term colonization in the COVID-19 patients, which results in excessive biofilm formation and virulence reduction-two distinct markers for chronic infections. The macrophage cytotoxicity test and intracellular reactive oxygen species measurement confirmed that the adapted P. aeruginosa strains reduced their virulence towards host cells and are better to escape from host immune clearance than their ancestors. CONCLUSION: Our study suggests that SARS-CoV-2 infection can create a lung environment that allow rapid adaptive evolution of bacterial pathogens with genetic traits suitable for chronic infections.

18.
J Infect Public Health ; 15(2): 222-227, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35032951

RESUMO

OBJECTIVES: The severe coronavirus disease 2019 (COVID-19) is characterized by acute respiratory distress syndrome (ARDS) and risk of fungal co-infection, pulmonary aspergillosis in particular. However, COVID-19 associated pulmonary aspergillosis (CAPA) cases remain limited due to the difficulty in diagnosis. METHODS: We describe presumptive invasive aspergillosis in eight patients diagnosed with COVID-19 in a single center in Shenzhen, China. Data collected include underlying conditions, mycological findings, immunodetection results, therapies and outcomes. RESULTS: Four of the eight patients had tested positive for Aspergillus by either culture or Next-generation sequencing analysis of sputum or bronchoalveolar lavage fluid (BALF), while the rest of patients had only positive results in antigen or antibody detection. Although all patients received antifungal therapies, six of these eight patients (66.7%) died. CONCLUSION: Due to the high mortality rate of CAPA, clinical care in patients with CAPA deserves more attention.


Assuntos
COVID-19 , Aspergilose Pulmonar Invasiva , Aspergilose Pulmonar , Humanos , Aspergilose Pulmonar Invasiva/diagnóstico , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Aspergilose Pulmonar Invasiva/epidemiologia , Aspergilose Pulmonar/diagnóstico , Aspergilose Pulmonar/tratamento farmacológico , Aspergilose Pulmonar/epidemiologia , SARS-CoV-2 , Centros de Atenção Terciária
19.
ACS Infect Dis ; 8(1): 129-136, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34936325

RESUMO

Co-infection of Pseudomonas aeruginosa (Pa) and Acinetobacter baumannii (Ab) is frequently observed in intensive care unit (ICU) patients but difficult to eliminate. Current clinical practice based on microbial population characterization and single-species-based antibiotic resistance profiling has ignored the potential interspecies interactions, which might lead to novel drug-resistance phenotypes. Here, we investigated the impacts of interspecies interactions on antibiotic therapies by establishing a Pa and Ab dual-species biofilm model. Our data showed that antibiotic exposure would reshape the community compositions of dual-species biofilms, and those of the extracellular polymeric substance (EPS) matrix of Pa, Psl exopolysaccharide in particular, promoted its interactions with Ab against imipenem stress. We further found other EPS structural fiber-eDNA contributed to the Psl-dependent dual-species biofilm stability under antibiotic treatment. Thus, targeting the EPS structural fibers such as Psl and extracellular DNA (eDNA) is a potent strategy for controlling polymicrobial biofilm related infections.


Assuntos
Acinetobacter baumannii , Pseudomonas aeruginosa , Acinetobacter baumannii/genética , Biofilmes , Resistência a Medicamentos , Matriz Extracelular de Substâncias Poliméricas , Humanos , Polissacarídeos Bacterianos , Pseudomonas aeruginosa/genética
20.
J Med Microbiol ; 70(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34951397

RESUMO

Introduction. Human adenovirus (HAdV) is an important pathogen in acute respiratory tract infections (ARTIs) and HAdV genotypes are associated with disease severity.Hypothesis. Comparative analyses of clinical features could reveal the severity of different HAdV genotypes in ARTIs.Aim. This study aimed to investigate the molecular epidemiology of HAdV infections and explore the correlations between clinical features and HAdV genotypes.Methodology. A retrospective study was conducted on ARTIs at Beijing Chao-Yang Hospital during the period 2011-2016. A standardized data form was used to record the clinical information. HAdV was detected by FQ-PCR from respiratory specimens, and genotypes were determined by entire hexon gene sequencing.Results. A total of 8044 samples were collected, of which 296 (3.7 %) were HAdV-positive. Patients ≤44 years old were more likely to be positive for HAdV. There were three peak periods of adenoviral infections, with detection rates of 13.03, 9.39 and 10.38 %, respectively. Six HAdV genotypes (HAdV-55, -7, -3, -14, -50, -2) were identified, with HAdV-55 and HAdV-7 being the most prevalent (50.6 and 21.5 %). Compared with HAdV-7 and other types, patients infected with HAdV-55 had a longer duration of fever (P=0.0428). Infections with HAdV-55 and HAdV-7 were more severe compared to those caused by other types, with higher rates of oxygen therapy and mechanical ventilation (P=0.0172 and P=0.0144). All five deaths were caused by HAdV-55.Conclusion. This study describes the epidemiological characteristics of HAdV infections in North China, revealing the higher severity of HAdV-55 and HAdV-7 in ARTIs. Thus, strengthened surveillance of HAdV genotypes is warranted.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Infecções Respiratórias , Infecções por Adenovirus Humanos/epidemiologia , Adenovírus Humanos/genética , Adulto , Pequim/epidemiologia , Genótipo , Humanos , Filogenia , Infecções Respiratórias/epidemiologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...